The term “geothermal” describes two similar technologies that operate on different scales. Both are used for harvesting clean energy from the earth. Both yield opportunities for displacing pollution and emissions. The best case would allow for us to pour support into both of these technologies, but the prolonged fragility of the economy prompts the question of which one of these options actually gets us farther? Which should we be encouraging, publicizing and subsidizing? Which gives more bang for the buck?
When we talk about “geothermal power” we most often refer to harnessing temperature the earth far below the surface in order to heat water (or another liquid), create steam and turn turbines. The core of the earth burns at a balmy 9,000 degrees Fahrenheit about 4,000 miles from the surface. Wells for geothermal power plants drill down between 1 and 2 miles in search of rock that exceeds water’s boiling temperature. A 2008 report from the U.S. Geological Survey estimated that 40,000 MW of geothermal capacity in the United States could be developed today while a 2006 report from the National Renewable Energy Laboratory estimates as much as 100,000 MW by 2025. (For reference, a regular coal power plant could be anywhere from 500 to 1,000 MW.)
By contrast, “geothermal heating and cooling” uses similar principals, but rather than providing energy to the grid it offsets energy used for tempering single buildings. Geothermal systems use the ground as either a heat sink or heat source depending on the climate and the season, capitalizing on the fact that the ground remains a stead 50-55 degrees once one digs more than six feet below the surface. Instead of miles of drilling, wells are bored down anywhere from 100 to 500 feet searching not for high temperatures, but merely enough surface area of stable temperature around the well casing. Combined with a heat pump, heat is absorbed from the ground in the winter and forced back into it in the summer. The result is less energy needed in the form of electricity or fossil fuels to temper interior space. (For a more in depth description of geothermal heating and cooling see Digging Into Geothermal).
Both of these technologies offer the opportunity to remove fossil fuel consumption, and their resulting emissions, from our energy usage portfolio. Given that coal is still our most abundant source of power production, the reliability of geothermal power can help replace coal plants as a source of baseload power for the grid. Geothermal heating and cooling can displace heating oil, natural gas or electricity depending on the location and time of year. Right now, heating and cooling of our homes account for a combined 54% of our annual household energy usage according to the U.S. Department of Energy.
Production and Costs
When comparing the cost efficiency of these two technologies that are drastically different in scale, the common metric can be broken down to British Thermal Units, or BTUs, which is a measure of heat.
On the power producing side, the Geothermal Energy Association claims that power plant costs for a new geothermal facility are around $3,400/kw installed. With the commonly accepted conversion of 3,412 BTUs/kwh, the math works out to around 1 BTU per dollar. When sizing systems for home heating and cooling, the metric in question is often tonnage–which technically refers to the how much heat a unit can create or remove relative to the amount of heat escaping 1 short ton of ice at 32 degrees for 24 hours. This equates to roughly 288,000 BTUs per day, or 12,000 BTUs per hour. Including well drilling, equipment and installation, the cost of a geothermal system can be around $8,250 per ton before tax credits. The capacity installation cost actually trumps geothermal power considerably at 1.45 BTU per dollar (and that is without any tax credits). The end result is that, as of right now, we can get more heating capacity out of the earth at the local level than the utility scale.
A bit counter-intuitive? Usually the law of Economies of Scale tells us that it is more advantageous to build in bigger quantities and on a larger scale. While data seems to be indicating that the cost to produce electricity at a functioning geothermal power plant is comparable with other forms of generation (including fossil fuels) the achilles heel of the technology reportedly lies in the process before the power plant is even built. The success of any geothermal power installation hinges on the location of wells that will provide enough ground heat, hot water or steam to drive turbines of a given capacity. Finding out exactly where to drill has proven to be the difficult part. Though exploratory drilling for oil has made a series of strides over the last half century geothermal still struggles, resulting in what one article in Scientific American implies as guess-and-check.
“The United States Geological Survey estimates that 70 to 80 percent of U.S. geothermal resources are hidden. You can’t see it on the surface, and we don’t have the technology to find it without blind drilling. … Geothermal hasn’t had the breakthroughs in geophysical science that the oil industry had in 1920s. We are still looking for where it’s leaking out of the ground.”
As an industry worth tens of billions of dollars, big oil has the capital to spend on exploration given that the payback on a successful well comes relatively quickly. Still in the building stages in the U.S., geothermal has to try to minimize excess cost in drilling a well that has a more gradual rate of return than striking it rich with black gold. Even then, the same article points out that only 13-15 states have meaningful access to estimated geothermal power reserves. Conversely, since geothermal heating and cooling is not searching for 120+ degree earth, suitable wells can be drilled just about anywhere (some soil compositions can prove challenging for open loop systems).
The GEA states that the U.S. had just under 3,000 MW of install geothermal power capacity as of 2007. Today there is just over 3,100 MW. If it sounds small, it’s because it is. We have over 43,000 MW of American wind capacity currently installed. According to the Energy Information Administration, geothermal was responsible for only 3.6% of renewable electricity production in 2009 (which in turn is only 11-12% of our country’s entire electricity production). However, it is important to note that at that time, it still out-shined solar by almost 2 to 1 in electricity production, admittedly before solar’s sizable gains in the past two years.
Keep the Scale Small
Given the various caveats and restrictions, geothermal heating and cooling could make more sense as a national pursuit at this point in time. Its application and installation make it an option for virtually anywhere in the United States. Given that all the energy harvested from a system never goes outside the individual home, new installations can dodge the steps of grid coordination or power purchase agreements that utility scale power projects need to negotiate.
So far, it appears like the market agrees. Around 2006, the country was installing 50-60,000 new geothermal heating and cooling systems a year. According to a report from Pike Research, that number has risen up to nearly 110,000 in 2011 with a forecasted rise to 326,000 units per year by 2017! Though the report does concede that even with the rise geothermal still only accounts for around 1% of the heating and cooling market, the rising cost of electricity and oil, combined with environmental incentives and regulations, all point to a stronger industry demand in the foreseeable future.
Image Credit: atissun.com , energy.gov , geothermalheatingandcoolingreview.com ,
February 27, 2012 at 12:55 pm
I didn’t even realize there were two forms of geothermal! Really great post! Very informative!
February 28, 2012 at 3:09 pm
Excellent summary of the differences between “geothermal power” and “geothermal heating and cooling”. Both technologies should be supported if we are to make full use of the resource and lessen our dependance on fossil fuels.
February 29, 2012 at 10:18 am
Great topic, which should get more attention.
I would suggest that you double check your method on the btu/$ for geothermal power, since your using both kW and kWh to calculate the 1 btu/$. An alternative method would be to use the levelized cost of energy for geothermal ($0.032-0.047/kWh: “Projected Costs of Generating Electricity” – IEA 2010.
At 3412 btu/kwh this would equal 72,595-106,625 btu/$ for a geothermal plant over it’s lifetime, which is very different from the 1 btu/$ value used.
Thanks for the article, as there needs to be more written on the variety of benefits that can be classified as geothermal.
February 29, 2012 at 10:49 am
C.R.
Thanks for stopping by. I definitely hear you on the conversation/comparison factors. The tricky part for me was trying to negotiate two different technologies at different scales that are built to run different for a different percentage of the time. Where I settled was capacity, but operation is another facet to this equation as well.
For geothermal heating and cooling, tonnage represents an hourly output in capacity (12,000 btu/hr). On the Geo power scale, I took a kilowatt of capacity, which could produce 1 kwh of output if running at full capacity for an hour (which I have read is a bit generous given that some systems can run at 95% of the time, but others average closer to 70% when you factor in removing chemicals and metals from the water that comes out of a well, depending on the specific plant type). This is how I got to btu of capacity per $.
Operationally, the GEA was estimating that the cost to run a geothermal plant was between $88-92 per mwh, ($0.092/kwh) which is higher than your/IEA estimates, but maybe yours is more up to date. Either way, the trick comes in that geothermal heating and cooling is not really designed to run constantly all the time, which makes the annual usage vary widely depending on the climate, the size of the home and its R-value. To calculate total btu over the life of a geothermal heating and cooling system has a lot of variables, but there may be an combined average one could use.
Thanks again for the comment. Hope to see you around again.
March 3, 2012 at 4:26 pm
Green energy has come a long way in the last decade, it will only continue to grow in the future. It’s an exciting time for invention.